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ABSTRACT: A rapid accurate and precise method for simultaneous determination of β-glucan and protein content in naked oat
samples, based on the coupling of near-infrared spectroscopy and chemometrics, is presented. In particular, three different
spectroscopic approaches [near infrared reflectance (NIR) and transmittance (NIT) on flour and NIT on whole grains] and various
spectral pretreatments were considered. To account for the possibility of outlying samples, a robust version of the PLS algorithm
(namely partial robust M-regression) was used. All the models resulted as accurate as the reference methods, reflectance
spectroscopy being the technique providing the best outcomes. Variable reduction by inclusion of the most relevant predictors only
(as evaluated by VIP scores) resulted in simpler and, in one case, more parsimonious models, without loss in accuracy.

KEYWORDS: near infrared spectroscopy, naked oat, robust multivariate calibration, chemometrics, β-glucan, protein,
partial robust M-regression (PRM)

’ INTRODUCTION

The recent knowledge of the relation between some food
components and human health status has triggered a growing
interest among consumers in functional food designed with the
aim to provide specific health benefits, by contributing to disease
prevention.1,2 Following this trend, oat (Avena sativa) is consid-
ered one of the most important grain cereals for human consump-
tion. Indeed, oat products are important sources of dietary fiber,β-
glucan, good nutritional value proteins, vitamins and other com-
ponents, which are demonstrated to be beneficial for human
health. Furthermore, the interest in oats for the production of
functional foods is increasing, due to the growing evidence of the
physiological effects and the positive impact of soluble fiber, i.e.
β-glucan, on some of the risk factors responsible for cardiovascular
diseases.3,4 β-Glucan is a large, linear nonstarch polysaccharide
(β(1f3)/(1f4)-D-glucose units) mainly localized in the endo-
sperm cell wall of oat and barley.5 The main property of water-
soluble β-glucan is its propensity to produce highly viscous
solutions;6,7 this characteristic is linked to its potential health
benefits.8 On this basis, raw material that is more suitable for oat
based food production is strongly requested. There are quite large
differences in oat grain composition among varieties, particularly
between husked and naked oats, the latter being nutritionally
superior.9,10 Naked oats, in which the hulls are not retained as in
common oats,11,12 usually contain 17 and 22% d.m. of protein and
3-6% d.m. of β-glucan, depending on genetic and agronomical
factors.13 However, the availability of naked oat germplasms in
Europe is scarce. Accordingly, two new registered domestic varieties
of naked oat “Irina” and “Luna” (2009) are being cultivated in Italy
for their potential use for human nutrition. In this framework,
maintaining a high level or even increasing protein and β-glucan

contents are key objectives of oat breeders, in relation to the
important role that these nutrients play in the human diet.
Therefore, following the industry requirements of naked oats
for human consumption, the selection of new lines with high
nutritional potential requires accurate and rapid methods to
evaluate the quality traits in the material produced in breeding
programs. With respect to this, it must be pointed out that, in
most of the cases, the traditional analytical methods are destruc-
tive and, particularly for β-glucan quantification,14-16 require
long determination times and high costs. On the other hand, in
relation to its well-known advantages, near infrared spectroscopy
can meet the breeding requirements17,18 and facilitate selection
based on traits of nutritional interest, such as protein and β-
glucan content. Indeed, the potential of near infrared reflectance
(NIR) spectroscopy to predict dietary fiber components has
been already reported for other cereal products. For instance,
previous works have shown the ability of NIR and near infrared
transmittance (NIT) technologies to quantify soluble and in-
soluble dietary fiber in kernels.19 Furthermore, other authors
have shown the possibility of NIR spectroscopy to analyze the
barley β-glucan content,20-23 and, recently, Schmidt et al.5 have
compared different types of NIR instruments in the ability to
measure β-glucan content in naked barley.

With the aim to assess the nutritive potential value in new naked
oat genotypes during breeding work, this study focuses on the
possibility of developing a rapid, accurate and precise alternative
method for the simultaneous quantification of β-glucan and
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protein content in naked oat samples, based on the coupling of
near-infrared spectroscopy and chemometrics. Additionally, as
different spectroscopic approaches can be adopted when carrying
out the measurements, the results of working in reflectance or in
transmission and, in the latter case, of analyzing whole grains or
milled samples are also evaluated and compared.

’MATERIALS AND METHODS

Naked Oat Samples. The whole data set comprises 168 naked oat
samples from 12 varieties, originally coming from Italy and other
European countries and being representative of a large genetic range.
The samples were obtained from multiyear trials carried out in Rome
during three successive years (2007-2009) with the aim of evaluating
the influence of different climatic conditions and some agronomic
factors (nitrogen fertilizer and seeding rate) on the nutritional value of
naked oat varieties.
Chemical Analyses. An aliquot of each sample was milled to a

particle size of 0.5 mm using a Fritsch 14.702 laboratory mill (Fritsch
GmbH, Markt Einersheim, Germany). Protein content was assessed by
the Kjeldhal method.24β-Glucan concentration wasmeasured according
to the enzymatic method of McCleary and Codd14 using a Megazyme
β-glucan kit (Megazyme International Ireland Ltd., Bray, Ireland).
NIR and NIT Analysis. Transmission measurements of grain and

flour were recorded on a grain analyzer (Infratec 1241; Foss Analytical
AB, H€ogan€as, Sweden) between 800 and 1048 nm scanning at 2 nm
interval yielding. The optical path length is 18 mm in whole grain
samples. For the analysis of the flour samples 3 mm long cups were used.
The collection of reflectance spectra was performed with a Foss NIR-
system model 6500 (Foss Analytical AB, H€ogan€as, Sweden), which
extends measurements into the visible range down to 400 to 2500 nm
scanning at 2 nm intervals. The analyses were made on ground grain
samples using a sample transport module.
Calibration Development. To relate the spectral measurements

to the analyte (β-glucan or protein) content, calibrationmodels were built
using multivariate latent variable-based regression25 and VIP26 were used
to further improve and interpret themodel. As several instrumental effects
can hinder or worsen the performances of the calibrationmodels, different
kinds of spectral pretreatments (MSC, detrending, first and second
derivatives, and the combination of MSC with any of the latter three)
were tested.27 In the case of reflectance data, pretreatments were applied
separately to the range 400-1098 nm and 1100-2498 nm to account for
the possibility of different scatter effects. Moreover, to account for the
possibility that outliers are present in the data set a robustified version of
the PLS algorithm, namely, partial robust M-regression, was used. Partial
robust M-regression28 adopts an iteratively reweighted regression scheme
to compute the latent variable model, where weights are introduced to
take into account both vertical (in error terms) and horizontal (in
leverage) outlyingness. As the readers may not be familiar with robust
regression, a brief description of the partial robust M-regression (PRM)
algorithm is provided in the following subsection.
Partial RobustM-Regression (PRM). Partial least squares (PLS)

regression25 is a well-known regression technique whose large success
and wide use rely on its ability to deal with numerous and collinear
x-variables and on the possibility of tuning the model complexity. These
properties are especially useful when dealing with spectral data, where
many and strongly correlated x-variables are recorded. However,
standard PLS algorithms are known to be severely affected by the
presence of outliers in the data or deviations from normality. Indeed, on
one hand the resulting model may fit the anomalous observations (and
mask their erroneous nature), while on the other hand, some good data
points might be identified as outliers. To overcome these drawbacks,
several robust alternatives to classical PLS have been proposed, with the
aim of detecting data contamination and estimating a regression model

that mainly fits the “good” data. Outliers can then be identified easily by
their residuals from this robust fit. In this paper, among the different
robust PLS regression strategies, the use of partial robust M-regression
(PRM), introduced in 2005 by Serneels et al.,28 was chosen.

In PRM, as in standard PLS, the original predictors are replaced with
orthogonal latent variables with maximum covariance with y. Therefore,
the original regression problem is reduced to the latent variable model:

Y ¼ TB ð1Þ
whereT is the score matrix, made up of the coordinates of the samples in
the latent variables space, and B are the regression coefficients relating
the dependent variables Y to these new set of descriptors. The scores T
are obtained from the original variables X via a weight matrix W:

T ¼ XW ð2Þ
When estimating the regression coefficients, two kinds of outliers can be
influential: leverage points (horizontal outliers), which are observations
far away from the majority of the data in the multivariate space of the
predictors (not necessarily leading to large residuals), and vertical
outliers, which may not be atypical in the regressor space but have large
residuals. PRM offers good robustness properties as it deals with both
kinds of outliers, adopting a downweighing scheme. Accordingly, for
each observation (xi, yi), two sets of real-valued weights in the range 0-1
are introduced: a weight wxi, which is responsible for dealing with
leverage points, and a weight wy

i, which is relevant for vertical outliers. In
the modeling phase, these weights are iteratively adjusted, in order to
diminish the negative influence of outlying objects on the regression
model. Eventually, observations close to the center of the data cloud in
the predictor space will receive a horizontal weight wx

i close to 1 while
for leverage points the value of this weight will be close to zero. Similarly,
observations resulting in a high residual will receive a vertical weight wy

i

close to zero.
Software. Spectra were exported from the instrument by means of

WinISI Project Manager v.1.50 software (Infrasoft International LLC,
State College, PA). Pretreatment and data set splitting were carried out
using in-house routines, while robust calibration was performed using
the multivariate toolbox TOMCAT.29 All routines were run under
MATLAB environment (The Mathworks, Natick, MA).

’RESULTS AND DISCUSSION

The measured spectra were used to build robust calibration
models for β-glucan and protein content. In particular, in a first
stage the performances of the different spectroscopic approaches
(reflectance on flour, transmittance on flour and transmittance
on whole grains) were evaluated independently. Successively, a
comparison among these three approaches was carried out. In all
cases, as far as the model building is concerned, since the two
analytes are independent of one another, robust calibration was
performed separately for each dependent variable.
NIR Analysis on Flour. NIR analysis was carried out on 166

naked oat flour samples, each one measured in duplicate,
resulting in a total of 332 recorded spectra. For each of the 166
samples, β-glucan (range: 2.39-4.33% as is) and protein content
(range: 12.48-21.53% as is) were also measured according to
reference methods described in the previous section. As near-
infrared data can suffer from the presence of scattering or other
undesired signal contributions, in the modeling phase, different
kinds of pretreatment (MSC, detrending, first and second
derivatives, and the combination of MSC with any of the latter
three) were tested for their effectiveness. In each case, after
pretreatment, spectral data matrices were built by averaging the
pretreated signals of the two replicated measurements for each
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sample. The next step was then to divide the whole data set into
training and test sets (the former to build the model, the latter to
validate it). As we decided to use a robust algorithm (partial
M-regression) to build reliable calibration models even in the
presence of possible outliers, a procedure based on the Ken-
nard-Stone algorithm30 was used to split the data set: indeed, by
including all the most diverse samples in the training set, the use
of this algorithm guarantees that, in case outliers are present, they
are all put in the calibration set. To account for the fact that
different pretreatments had to be tested and that as much as
possible of the variation after scatter or baseline removal was
covered in the selection, at the same time having a unique sample
splitting scheme to be able to compare the outcomes after the
different pretreatments, the following procedure was adopted.
The Kennard-Stone algorithm was applied on each of the data
matrices corresponding to the different pretreatments using a
splitting ratio of about 3:1 (120 samples in the training set and 46
in the test set). Then, for each sample the frequency of selection
as part of the training set was computed and all the samples being
selected more than 4 times were included in the final training set
(118 samples), while all the remaining were left out as the test set
(48 samples). A representation of the training/test splitting in
the space spanned by the first two principal components is shown
in Figure 1 for the different pretreatments. It should be stressed
that, in general, the use of the Kennard-Stone algorithm for data
set splitting has a potential drawback due to the fact that
predictions on the test set may be too optimistic as the test
samples are well positioned in the space spanned by the training
ones. However, in the case of the splitting procedure used in this
work, this drawback can be partly compensated by the fact that
the final data splitting resulted from the combination of the
outcomes of the selection on the differently pretreated data sets.
After splitting the data set according to the procedure de-

scribed above, the training samples were used to build the robust
calibration models for the quantification of β-glucan and protein
content. As anticipated, partial M-regression was used to build
robust latent variable-based calibration models. The use of this

algorithm allows reliable results to be obtained also in the
presence of both vertical and horizontal outliers in the training
set. To ensure robustness of the algorithm, it is necessary to
assume the largest possible percentage of data contamination, so
in this study contamination level was set at 15%.With this setting,
individual calibration models were built for protein and β-glucan
content. In both cases, Monte Carlo cross-validation with 500
iteration and 30 objects left out per iteration was used to
determine the optimal complexity of the models.
The results of the modeling phase are summarized in Table 1

(in all cases, the spectral pretreatments described above were
followed by robust centering by subtraction of the L1-median).
It can be seen from Table 1 that, in the case of β-glucan, MSC

was the pretreatment resulting in the best performances in cross-
validation and therefore was the one selected to build the final
model resulting in a root-mean-square error in calibration
(RMSEC) of 0.177 and a root-mean-square error in cross-
validation (RMSECV) of 0.198 (5 LVs were retained). The
optimal model was then tested on the external validation set,
resulting in a comparable error (root-mean-square error in
prediction, RMSEP = 0.236, see Table 1). These results can be
visualized in Figure 2a where the observed vs predicted graph is
reported in the case of both training (median of the Monte Carlo
cross-validated estimation) and test samples.
Inspection of the same Figure 2a can be useful to show the

importance of using a robust calibration approach for model
building. Indeed, for instance, one of the samples in the calibra-
tion set appeared to have a β-glucan content of 0% (most likely
due to reference error): this is an example of vertical outlying-
ness. Together with this rather evident vertical outlier, the PCA
plots in Figure 1 suggested that there could be other possible
horizontal outliers in the data set. In this situation, the traditional
approach would be to remove outliers from the training set
(using some diagnostic tool) and then build a classic PLS model
on the supposedly clean calibration data. On the other hand,
PRM not only results in a reliable model even in the presence of
severe outliers but provides also an a posteriori model-based

Figure 1. Representation of the training/test set splitting for the data set made up of NIR measurements on flour samples. Samples are projected onto
the space spanned by the first two principal components, and the effect of the different pretreatments is shown [O training set; � test set].
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Table 1. Determination of β-Glucan and Protein Content. Characteristics of the Optimal PRM Models

pretreatment no. of LVs RMSEC RMSECV RMSEP

β-Glucan

NIR (flour) MSC þ robust centering 5 0.177 0.198 0.236

NIT (flour) MSC þ 1st derivative þ robust centering 1 0.181 0.208 0.246

NIT (grain) 1st derivative þ robust centering 4 0.290 0.302 0.349

Protein Content
NIR (flour) MSC þ detrendingþ robust centering 5 0.258 0.291 0.314

NIT (flour) MSC þ 1st derivative, robust centering 4 0.261 0.305 0.325

NIT (grain) 1st derivative, robust centering 5 0.271 0.287 0.336

Figure 2. β-Glucan (a) and protein (b) determination on flour samples by NIR spectroscopy: observed vs predicted plot for the optimal calibration
model [b cross-validated prediction; � test set].
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estimate of the degree of outlyingness of each sample through the
inspection of the weights. In particular, the plot of the residual vs
leverage weights of the PRM model for the calibration of
β-glucan is reported in Figure 3. It is evident from the figure
that the sample for which a 0% β-glucan content was measured is
clearly identified as an observation with a high degree of out-
lyingness. As expected, the main contribution to its outlyingness
is given by the extremely high value of the residual, but it also
shows a not negligible leverage. The same figure shows how other
samples were significantly downweighed due to their extent of
horizontal or vertical outlyingness.
As far as the calibration of protein content is concerned, MSC

followed by detrending was the pretreatment resulting in the best
performances in cross-validation and therefore was the one
selected to build the final model resulting in a RMSEC of
0.258 and RMSECV of 0.291 (5 LVs were retained). The optimal
model was then tested on the external validation set, resulting in a
comparable error (RMSEP = 0.314, see Table 1). These results
can be visualized in Figure 2b where the observed vs predicted
graph is reported in the case of both training (median of the
Monte Carlo cross-validated estimation) and test samples.
In order to check which spectral regions contributed themost to

the calibration models, VIP values were computed for each
wavelength:26 VIP is an index of howmuch the single experimental
variable contributes to the bilinear calibration model, and it is
scaled in such a way that indices having VIP larger than 1 are
considered to contribute significantly. In particular, the VIP scores
for the optimal PRM models in the case of the analysis of NIR
spectra of flour are reported in Figure 4. It can be seen from the
figure that the regions contributing the most to the regression
model for β-glucan are those between 400 and 700 nm, around
1150 nm and between 1900 and 2300 nm. The latter region is
reported in the literature to be characterized, for polysaccharides,
by -OH stretching/deformation and C-O/O-H stretching

combination bands31 and was identified by other authors,5 as
correlated with β-glucan content in barley samples. The signifi-
cance of the region around 1900 nm can be hypothesized as a
compensation for the contribution ofmoisture.On the other hand,
the regions contributing the most to the bilinear model for the
quantification of proteins are those between 400 and 700 nm,
around 1100 and 1500 nm and between 2250 and 2498 nm:
the latter two regions include wavelengths that can be ascribed to
N-H deformation bands, and the inclusion of the lower frequen-
cies can be interpreted as a way of compensating for the possible
interference of starch or β-glucan itself.
Based on these considerations, in a successive attempt, cali-

bration was repeated including in the data set only the wave-
lengths showing a VIP score larger than 1, to check whether this
kind of variable selection could improve the modeling perfor-
mances. Also with this reduced number of variables, the optimal
complexity was 5 LVs in both cases as selected by Monte Carlo
cross-validation (500 iterations leaving aside 30 samples per
iteration) and the performances were comparable to those
obtained on the full data set (RMSEC = 0.184, RMSECV =
0.202, RMSEP = 0.246 for β-glucan and RMSEC = 0.277,
RMSECV = 0.305, RMSEP = 0.325 for proteins).
NIT Analysis on Flour. The same approach was then used to

analyze the transmission spectra recorded on oat flour samples.
In this case, only 54 samples (β-glucan range, 2.01-4.17% as is;
protein range, 12.93-19.62% as is) were analyzed in duplicate
resulting in 108 recorded spectra. Analogously to what already
was described for reflectance analyses, different pretreatments
were tested and, for each sample, replicate measurements were
averaged after pretreatment. The same splitting procedure
described in the previous section (based on the Kennard-Stone
algorithm) was used to divide the 54 samples into training and
test sets, so that 39 measurements were used to build the
calibration models and the remaining 15 to externally validate it.

Figure 3. PRMmodeling of β-glucan (NIR reflectance measurements on flour): leverage vs residual weights plot. The “evident” outlier having zero β-
glucan as reference value is marked as a square.
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Figure 4. PRMmodeling. VIP scores of the optimal PLS model for β-glucan (a) and protein (b) determination on flour samples by NIR spectroscopy
are shown superimposed on the median pretreated spectra of the samples. Wavelengths having a VIP score higher than 1 are considered to contribute
significantly to the model.
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Monte Carlo cross-validation (500 iterations removing 10
samples a time from the training set) was used to select the
optimal complexity of the PLS models and the best pretreatment
for the spectral data. In particular, both for proteins and β-glucan,
MSC followed by first derivative (Savitzky-Golay: 15 point
window, third order polynomial) resulted to be the optimal
preprocessing. Accordingly, the best PRM model for β-glucan
included 1 LV and resulted in RMSEC = 0.181 and RMSECV =
0.208, while that for proteins included 4 LVs and resulted in
RMSEC = 0.261 and RMSECV = 0.305 (Table 1). When applied
to the 15measurements left out to constitute the external validation
set, very good performances were obtained (RMSEP = 0.246 and

0.325 forβ-glucan and proteins, respectively). These results can also
be visualized in Figure 5 where the observed vs predicted graph is
reported in the case of both training (median of the Monte Carlo
cross-validated estimation) and test samples.
Analysis of the VIP scores was used also in this case to identify

the spectral regions contributing themost to the calibrationmodel.
As shown in Figure 6, most of the relevant contributions are from
the wavelengths between 900 and 920 nm and between 960 and
1000 nm in the case of β-glucan, while for protein the highest VIP
values correspond to the wavelengths between 930 and 960 nm.
Also in this case, calibration was repeated including in the data

matrix only the wavelengths having a VIP score larger than 1 to

Figure 5. β-Glucan (a) and protein (b) determination on flour samples by NIT spectroscopy: observed vs predicted plot for the optimal calibration
model [b cross-validated prediction; � test set].
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Figure 6. PRMmodeling. VIP scores of the optimal PLSmodel forβ-glucan (a) and protein (b) determination on flour samples byNIT spectroscopy are shown
superimposed on themedian pretreated spectra of the samples.Wavelengths having aVIP score higher than 1 are considered to contribute significantly to themodel.
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see whether variable reduction could improve the interpretability
and/or the performances of the model. With this reduced
number of variables, the optimal complexity was the same as
for the whole wavelength range (1 LV for β-glucan and 4 LVs for
proteins) as selected by Monte Carlo cross-validation (500
iterations leaving aside 10 samples per iteration) and the
performances were comparable to those obtained on the full
data set (RMSEC = 0.195, RMSECV = 0.221, RMSEP = 0.257
for β-glucan and RMSEC = 0.267, RMSECV = 0.319 RMSEP =
0.338 for proteins).
NIT Analysis onWhole Grains. Finally, data recorded on 168

whole grain samples by transmission spectroscopy were analyzed
to build robust calibration models to predict β-glucan (range:
2.24-4.17% as is) and protein content (range: 12.48-20.01% as is).
The data set was then divided into training and test sets

following the same approach based on the Kennard-Stone
algorithm already described in the previous paragraphs: 114
samples were chosen as training and the remaining 54 as test sets.
As in the previous cases, replicate spectral measurements
were averaged after pretreatment to build the predictor data
matrices.
The optimal complexity and the best pretreatment among those

examined in this study were chosen based on Monte Carlo cross-
validation (500 iterations, 30 samples left out at each iteration).
Both for the prediction of β-glucan and protein content, the best
models were chosen to be the ones where first derivative
(Savitzky-Golay: 15 point window, third order polynomial)
was used to preprocess the data (Table 1). As far as β-glucan is
concerned, 4 latent variables were retained in the final PRMmodel,
which resulted in satisfactory modeling and cross-validation

Figure 7. β-Glucan (a) and protein (b) determination on whole grain samples by NIT spectroscopy: observed vs predicted plot for the optimal
calibration model [b cross-validated prediction; � test set].
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performances (RMSEC = 0.290, RMSECV = 0.302). When used
to predict the β-glucan concentration of the test samples, a
prediction error (RMSEP) of 0.349 was obtained. These values
appear at a first glance higher than those obtained by the other
examined spectroscopic approaches; however, as the test samples
are different in the three cases, a direct comparison of the
prediction errors is not straightforward and a different computa-
tional approach is needed (see next paragraph). On the other
hand, as far as the determination of protein content is concerned,
the optimal PRM model (5 latent variables) resulted in RMSE
values comparable to those obtained with the other two

approaches (RMSEC = 0.271, RMSECV = 0.287, RMSEP =
0.336). Calibration results can also be visualized in Figure 7, where
the observed vs predicted plot is reported for the training (median
of the Monte Carlo cross-validated estimation) and test sets.
Analysis of the VIP scores (reported in Figure 8) suggested

that the spectral regions contributing the most to the bilinear
models were those around 910 nm and between 940 and
1000 nm for β-glucan, while, for protein, those between 920
and 960 nm and between 1000 and 1020 nm. These selected
regions are in good agreement with those identified in the case of
NIT analysis of flour.

Figure 8. PRM modeling. VIP scores of the optimal PLS model for β-glucan (a) and protein (b) determination on whole grain samples by NIT
spectroscopy are shown superimposed on the median pretreated spectra of the samples. Wavelengths having a VIP score higher than 1 are considered to
contribute significantly to the model.
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Analogously to what was done in the previous cases, calibra-
tion was repeated by including in themodel only the wavelengths
having VIP larger than 1. A slightly more parsimonious PRM
model including 3 LVs only was obtained in the case of β-glucan,
while 5 LVs were found to be the optimal complexity of the PRM
model for protein content also on this reduced data set. For both
analytes, the models computed on the variables selected using
VIP scores gave performances with respect to those computed on
the full data set (RMSEC = 0.299, RMSECV = 0.307, RMSEP =
0.357 for β-glucan and RMSEC = 0.267, RMSECV = 0.295,
RMSEP = 0.343 for proteins).
Comparison between the Three Spectroscopic Methods.

The results reported in the previous sections showed that both in
the case of proteins and in the case of β-glucan the three
spectroscopic approaches that were tested in this study gave all
satisfactory results (the only exception being the analysis of
β-glucan by NIT on grain samples resulting in higher RMSE
values). However, as the number and kind of samples used in the
training and in the validation phases were different in each of the
three cases, a direct comparison of the three approaches based on
the previous results is not feasible. Therefore, in order to compare
among themselves the three tested approaches (reflectance mea-
surements on flour, transmission measurements on flour and
transmission measurements on whole grains) a further investiga-
tion was carried out by building a data set including only the
samples that were analyzed with all three approaches for the sake
of comparison.
This resulted in 53 samples (106 spectra) being selected for

β-glucan and protein determination, respectively. To divide the
samples between the sets, as the aim was to have the same
training and test samples for each spectroscopic approach, data
set splitting was performed applying a variant of the Kennard-
Stone-based approach described previously. In this case, the
Kennard-Stone algorithm was applied separately to the three
data sets corresponding to the different spectroscopic ap-
proaches tested, each one after what appeared to be the optimal
pretreatment (see Table 1). Then, for each analyte, samples
being chosen as training set in at least two out of the three
Kennard-Stone runs were selected as the final training set.
Accordingly, 39 (β-glucan) or 38 (protein) samples were used to
build the calibration models, which were then tested on the
remaining (14 or 15, respectively). Here, as, at least in the case of
reflectance measurements on flour, different pretreatments re-
sulted to be optimal (Table 1), a different training/test splitting
scheme was adopted for the two analytes. As in the previous
stages of this study, Monte Carlo cross-validation was used to
select the optimal complexity of the PRM models.

The results of this comparison are reported in Table 2 for both
dependent variables.
It is evident fromTable 2 that, when compared to one another,

reflectance measurements on flour samples provide the better
results in terms of predictive ability on unknown samples and this
difference is slightly more evident in the case of the determina-
tion of β-glucan.

’DISCUSSION

The results reported in the previous section allow some
considerations and conclusions to be drawn. At first it was
demonstrated that the use of near-infrared spectroscopy coupled
to chemometric robust calibration techniques allows the simul-
taneous measurements of protein and β-glucan contents in
naked oat grains with the accuracy requested for screening
samples and significant advantages in terms of time and costs
of the analyses. This can result in the possibility of speeding up
the overall quality control of the samples and make specific
breeding programs easier. Additionally, the use of chemometrics
provides interpretable models: the analysis of the VIP scores can
help the identification of the spectral regions that are more
correlated with the analyte of interest. Besides interpretability,
identification of the most important wavelengths in the spectra
can result in a simpler and, in one case, more parsimoniousmodel
without any significant loss of the predictive ability. The results
obtained in this work for β-glucan prediction were in agreement
with the findings of Schmidt et al.5 in naked barley by using
analogous instruments. The calibrations included samples which
covered the possible range of protein and β-glucan content, and
the good accuracy both in cross-validation and in the external
validation set revealed a close relationship between NIT-NIR
and laboratory data.

When comparing among themselves the results obtained with
the different spectroscopic approaches, it was found that in
milled samples the NIR spectroscopy showed better perfor-
mance in comparison with the NIT technology, probably
because the limited wavelength range of the employed transmis-
sion spectrometer provided less available information.19 Anyway,
even if the results were comparatively worse, this study has also
shown that NIT technology on whole grain has a sufficient
accuracy to be used in naked oat quality control for fast and
accurate analysis of nutritional components without requiring
extensive sample preparation. This issue is of particular impor-
tance as many quality control laboratories working on cereals
employ NIT spectrometers in a networked configuration: there-
fore, the possibility of obtaining accurate results usingNIT allows
the development of calibration models for quality control
applications that can be easily transferred through the web from
one instrument to another.32
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